Relationship between Promotion of Xyloglucan Metabolism and Induction of Elongation by Indoleacetic Acid.
نویسندگان
چکیده
Auxin promotes the liberation of a xlyoglucan polymer from the cell walls of elongating pea (Pisum sativum) stem segments. The released polymer can be isolated from the polysaccharide fraction of the water-soluble portion of tissue homogenates, thus providing as assay for this kind of metabolism. Promotion of xyloglucan metabolism by auxin begins within 15 minutes of hormone presentation. The effect increases with auxin concentration in a manner similar to the hormone effect on elongation. However, the xyloglucan effect of auxin occurs perfectly normally when elongation is completely blocked by mannitol. Metabolic inhibitors and Ca(2+), on the other hand, inhibit auxin promotion of elongation and of xyloglucan metabolism in parallel. The results suggest that the changes in xyloglucan reflect the means by which auxin modifies the cell wall to cause elongation.
منابع مشابه
The control of storage xyloglucan mobilization in cotyledons of Hymenaea courbaril.
Hymenaea courbaril is a leguminous tree species from the neotropical rain forests. Its cotyledons are largely enriched with a storage cell wall polysaccharide (xyloglucan). Studies of cell wall storage polymers have been focused mostly on the mechanisms of their disassembly, whereas the control of their mobilization and the relationship between their metabolism and seedling development is not w...
متن کاملChanges in molecular size of previously deposited and newly synthesized pea cell wall matrix polysaccharides : effects of auxin and turgor.
Effects of indoleacetic acid (IAA) and of turgor changes on the apparent molecular mass (M(r)) distributions of cell wall matrix polysaccharides from etiolated pea (Pisum sativum L.) epicotyl segments were determined by gel filtration chromatography. IAA causes a two- to threefold decline in the peak M(r) of xyloglucan, relative to minus-auxin controls, to occur within 0.5 hour. IAA causes an e...
متن کاملSoluble Cell Wall Polysaccharides Released from Pea Stems by Centrifugation : I. EFFECT OF AUXIN.
The metabolism of polysaccharides by pea stem segments treated with and without auxin was investigated using a centrifugation technique for removing solution from the free space of the cell wall. Glucose is the predominant sugar in both the ethanol-soluble and ethanol-insoluble fractions of the cell wall solution extracted with water. In the water-soluble, ethanol-insoluble polysaccharides, ara...
متن کاملInhibition of 2,4-dichlorophenoxyacetic Acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide.
Xyloglucan, isolated from the soluble extracellular polysaccharides of suspension-cultured sycamore (Acer pseudoplatanus) cells, was digested with an endo-beta-1,4-glucanase purified from the culture fluid of Trichoderma viride. A nonasaccharide-rich Bio-Gel P-2 fraction of this digest inhibited 2,4-dichlorophenoxyacetic-acid-stimulated elongation of etiolated pea stem segments. The inhibitory ...
متن کاملXyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid.
Xyloglucan endotransglycosylase (XET) activity extractable from internodes of tall and dwarf varieties of pea (Pisum sativum L.) was assayed radiochemically using tamarind seed xyloglucan as donor substrate and an oligosaccharidyl-[3H]alditol as acceptor substrate. Internodes I and II showed little elongation during the period 15 to 21 d after sowing; XET activity remained relatively constant a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 1974